Рефераты по БЖД

Состав радиоактивного излучения

Введение.

Развитие ядерной энергетики во многих странах мира в последние годы сделала угрозу радиоактивного заражения больших территорий реально не только в случае применения ядерного оружия, но и в случае разрушения объектов ядерно-топливного цикла, находящихся в районе введения боевых действий, обычным оружием или при их аварии в ходе промышленной эксплуатации. Поэтому радиационной безопасность превращается в одну из важнейших задач по обеспечению безопасности жизнедеятельности человека.

Сама по себе радиоактивность – явление не новое, как считают некоторые, связывая её с появлением ядерного оружия и со строительством АЭС. Она существовала на Земле задолго до зарождения жизни. Известно, что в природе существуют химические элементы устойчивые и неустойчивые (уран, торий, радий и др.). Внутриядерных сил для сохранения прочности ядра у последних недостаточно, ядра атомов неустойчивого элемента превращаются в ядра атомов другого элемента. Такой процесс самопроизвольных превращений ядер атомов неустойчивых элементов называют радиоактивным распадом или радиоактивностью.

В России с 1976 г. действуют нормы радиационной безопасности, уточнённые после Чернобыльской аварии в 1987 г., согласно которым всё население разбито на три категории: А – персонал радиационных объектов, АЭС, радиологи, рентгенологи и др.; Б – население, проживающее вблизи радиационных объектов; В – всё остальное население.

Состав радиоактивного излучения.

Проникающая радиация не однородна. Классический опыт, позволяющий обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме. Под действием магнитного поля пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный – бета-лучей и нейтральный – гамма-лучей. Поток ядерного взрыва представляет собой поток альфа, бета, гамма излучений и нейтронов. Поток нейтронов возникает вследствие деления ядер радиоактивных элементов. Альфа-лучи представляют собой поток альфа-частиц (дважды ионизированных атомов гелия), бета-лучи – поток быстрых электронов или позитронов, гамма-лучи – фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей. При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью. Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма. Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма. Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека.

Радиоактивное заражение.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением. Поражающее действие проникающей радиации определяется способностью гамма-квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у поражённых людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиарда пар ионов. В зависимости от дозы излучения различают три степени лучевой болезни. Первая (лёгкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, лёгкой тошнотой, кратковременным головокружением, повышением потливости. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200 – 300 р; в этом случае признаки поражения – головная боль, повышение температуры, желудочно-кишечное расстройство – проявляются более резко и быстрее. Третья (тяжёлая) степень лучевой болезни возникает при дозе свыше 300 р; она характеризуется тяжёлыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжёлая форма нередко приводит к смертельному исходу.

Радиоактивное заражение людей, местности и различных объектов при ядерном взрыве обуславливается осколками деления вещества заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва, а также наведённой радиоактивностью. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва. При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своём виде; распад сопровождается образованием альфа-частиц. Наведённая радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики – от одной минуты до часа. В связи с этим наведённая активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру. Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем всё более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину несколько десятков километров.

Перейти на страницу номер:
 1  2  3  4 


Другие рефераты:

© 2010-2021 рефераты по безопасности жизнедеятельности