Рефераты по БЖД

Свойства веществ характеризующие их пожарную опасность

Одним из критериев пожарной опасности горючих жидкостей является температура вспышки.

Температурой вспышки паров горючей жидкости называется та минимальная температура жидкости, при которой в условиях нормального давления жидкость выделяет над своей свободной поверхностью пары в количестве, достаточном для образования с окружающим воздухом смеси, вспыхивающей при поднесении к ней открытого огня.

Группу воспламенения строительных материалов определяют согласно ДСТУ Б.В.1.1. – 2 – 97 (ГОСТ 3042). Параметром воспламеняемости материалов является критическая поверхностная плотность теплового потока (КППТП).

В зависимости от КППТП материалы подразделяются на три группы: В1, В2, В3 (табл.4.2.2.).

Таблица 4.2.2.

Классификация строительных материалов по группам воспламеняемости

Группа воспламеняемости материала

КППТП, кВт/м2

В 1

35 ≤ КППТП

В 2

20 ≤ КППТП < 35

В 3

КППТП < 20

Распространение пламени по материалам оценивают по ДСТУ Б В.2. 7-70-98 (ГОСТ 30444-97).

В зависимости от величины КППТП строительные материалы подразделяют на четыре группы распространения пламени: РП1, РП2, РП3, РП4 (табл. 4.2.3.).

Таблица. 4.2.3.

Классификация строительных материалов по группам распространения пламени

Группа распространения пламени

Критическая поверхностная плотность теплового потока, кВт/м2

РП 1

11,0 и более

РП 2

от 8,0, но не менее 11,0

РП 3

от 5,0, но не менее 8,0

РП 4

менее 5,0

К легковоспламеняющимся жидкостям (ЛВЖ) относятся жидкости, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61°С в закрытом тигле и 66°С в открытом тигле.

К горючим жидкостям (ГЖ) относятся жидкости, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61°С в закрытом тигле и 66°С в открытом тигле.

Температурой воспламенения называют ту минимальную температуру, при которой нагреваемая в определённых условиях жидкость загорается при поднесении к ней пламени и горит в течение (не менее) 5с. Температура воспламенения опаснее, чем температура вспышки, так как пары и жидкость при воспламенении продолжают гореть после удаления пламени.

При строительных работах, особенно при приготовлении мастик, покрасочных работах, необходимо чётко знать степень возгораемости находящихся поблизости материалов и конструкций, правильно организовать контроль по предупреждению пожаров и обеспечить необходимым количеством средств тушения.

В зависимости от вида горючего материала пожары подразделяются на классы: А, В, С и Д (рис. 4.2.1.).

При горении твёрдых и жидких горючих веществ различают три стадии развития пожара.

Начальная стадия (загорание) характеризуется неустойчивостью, сравнительно низкой температурой в зоне пожара, малой высотой факела пламени и небольшой площадью очага горения (длится обычно 5 – 20 мин). В этой стадии горение может быть быстро прекращено с применением простейших средств (1 – 2 огнетушителя и т. п.). Медленное развитие пожара объясняется тем, что приток свежего воздуха затруднён, так как закрыты окна и двери, кроме того, много тепла тратится на прогрев и подготовку горючих материалов к воспламенению.

Вторая стадия характеризуется тем, что выделяющееся при горении тепло усиливает процесс разложения и испарения горючих веществ. Площадь горения и факел пламени увеличиваются, и горение переходит в устойчивую форму. Для ликвидации пожара в этой стадии уже требуется применение водяных или пенных струй объёмного тушения.

Третья стадия отличается большой площадью горения, высокой температурой, большим размером излучающих поверхностей, конвективными потоками, деформацией и обрушением конструкций. В третьей фазе по мере выгорания содержимого температура в помещении начинает падать.

При воспламенении горючих газов горение развивается настолько быстро, что стадии развития пожара обычно не различаются (скорость распространения пламени не менее 1,0 м/с).

Пожары сопровождаются опасными и вредными явлениями, которые необходимо учитывать при проектировании и строительстве зданий и сооружений, ведении работ. С точки зрения пожарной безопасности очень важно принять правильное планировочное решение, предложить защиту строительных конструкций, предусмотреть необходимые пути эвакуации.

Взрыв – это разновидность горения и характеризуется чрезвычайно быстрыми процессами физико- химических превращений горючих веществ с образованием огромных количеств тепловой энергии, практически, без рассеивания тепла в окружающую среду.

Различают два концентрационных предела взрываемости веществ.

Минимальная концентрация газа, пара или пыли в смеси с воздухом, способная к воспламенению или взрыву называется нижним пределом воспламенения (НП).

Наибольшая концентрация газов или паров в воздухе, при которой ещё возможно воспламенение или взрыв (в дальнейшем с повышением концентрации воспламенение или взрыв считаются невозможными) называется верхним пределом воспламенения (ВП).

Все концентрации смеси газа с воздухом, в пределах нижней и верхней границы взрыва, взрывоопасны.

Для обеспечения пожаровзрывобезопасности производств в 1985г. ГОСТ 12.1.004-91 был введён новый критерий – ПДВК (предельно допустимая взрывобезопасная концентрация), обеспечивающий на каждом рабочем месте безопасность 10-6.

где Кґґб,э – коэффициент безопасности к нижнему концентрационному пределу воспламенения. Значения Кґґб,э определены экспериментально и приведены в табл. 1 и 2 ГОСТ 12.1.004-85.

,

где Сн - нижний концентрационный предел воспламенения газа или пара в воздухе при атмосферном давлении и температуре 25°С, % об;

t – температура пара или газа, °С.

В таблице 4.2.4. приведены показатели некоторых взрывопожароопасных ЛВЖ и ГЖ.

Взрыв от горения отличается ещё большей скоростью распространения огня. Так, скорость распространения пламени во взрывчатой смеси, находящейся в закрытой трубе, 2000 – 3000 м/с. Сгорание смеси с такой скоростью называется детонацией. Возникновение детонации объясняется сжатием, нагревом и движением несгоревшей смеси перед фронтом пламени, что приводит к ускорению распространения пламени и возникновению в смеси ударной волны. Образующиеся при взрыве газовоздушной смеси воздушные ударные волны обладают большим запасом энергии и распространяются на значительные расстояния. Во время движения они разрушают сооружения и могут стать причиной несчастных случаев. Оценка опасности воздушных ударных волн для людей и различных сооружений производится по двум основным параметрам – давлению во фронте ударной волны ∆Р и сжатию τ. Под фазой сжатия понимается время действия избыточного давления в волне. При τ ≤ 11 мс безопасным для людей считается давление 0,9-113 Па. Расчёты безопасных расстояний для людей при потенциальной угрозе взрыва ведутся только по давлению во фронте ударной волны, так как при взрывах всегда τ во много раз больше 11 мс

Перейти на страницу номер:
 1  2  3  4 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности