Рефераты по БЖД

Распространение пламени при пожаре

В условиях горения в потоке большое практическое значение имеет вопрос удержания пламени на горелке или в камере. Задача обычно решается или путём непрерывного зажигания смеси от специального зажигательного устройства, или с помощью установки поперёк потока плохо обтекаемых тел (стабилизирующих экранов), обеспечивающих обратную циркуляцию горячих продуктов горения.

Горение взрывчатых веществ (ВВ) — самораспространение зоны экзотермической химической реакции разложения взрывчатого вещества или взаимодействия его компонентов посредством передачи от слоя к слою энергии реакции в виде тепла. В том случае, когда газообразные продукты горения могут свободно оттекать от горячего заряда, горение ВВ, в отличие от их детонации, обычно не сопровождается значительным повышением давления и не принимает характера взрыва. Конденсированные ВВ, аналогично смесям газообразных горючих и окислителей, не требуют подвода кислорода извне.

Скорость горения зависит от природы ВВ, а также от давления, температуры, плотности заряда и др. факторов и при атмосферном давлении для различных ВВ изменяется от долей мм до нескольких м в сек. Для инициирующих ВВ она, как правило, в десятки и сотни раз больше, чем для вторичных.

Гетерогенное горение. Для горения жидких веществ большое значение имеет процесс их испарения. Горение легко испаряющихся горючих практически относится к гомогенному горению, т. к. такие горючие ещё до воспламенения полностью или почти полностью успевают испариться. Применительно к жидким горючим различают 2 характеристики: температуру вспышки и температуру обычного самовоспламенения.

Широко распространённой жидкой гетерогенной системой является высокодисперсная капельная система, для которой определяющее значение имеют законы воспламенения и горения каждой отдельной капли. В отличие от гомогенного горения ,в этом случае стадия воспламенения играет относительно меньшую роль.

Горение твёрдых веществ в простейшем случае не сопровождается разложением вещества с выделением их летучих компонентов (например, горение металлов). В технике большое значение имеет горение твёрдого топлива, главным образом углей, содержащих углерод и некоторое количество органических веществ, которые при нагревании топлива разлагаются и выделяются в виде паров и газов. Термически неустойчивую часть топлива принято называть летучей, а газы — летучими. При быстром нагревании частиц топлива (что возможно для частиц малого размера) летучие компоненты могут не успеть выделиться и сгорают вместе с углеродом. При медленном нагревании наблюдается чёткая стадийность начального этапа горения — сначала выход летучих компонентов и их воспламенение, затем воспламенение и горение твёрдого, так называемого коксового, остатка, который кроме углерода содержит минеральную часть топлива — золу.

Каталитическое, или, вернее, поверхностное каталитическое, горение газовых смесей относится к классу гомогенно-гетерогенных процессов горения: химический процесс может протекать как в объёме, так и на катализирующей твёрдой поверхности (например, на платине). В зависимости от конкретных условий может проявляться гомогенный или гетерогенный тип горения. При высоких температурах, когда объёмное горение идёт быстро, роль поверхностно-каталитического горения, как правило, мала и может быть заметной только в случае, когда смесь течёт в узких каналах, пористых материалах или мелкозернистых засыпках из катализатора. Применяемый в технике термин «беспламенное» горение газовых смесей не всегда эквивалентен понятию поверхностно-каталитического горения Скорее он является характеристикой горения без светящегося пламени.

распространение пламя горение температура

Распространение пламени в горючих смесях

Распространение волны горения является одним из возможных режимов, в котором могут протекать экзотермические химические реакции. При распространении волны горения исходное вещество, имеющее сравнительно низкую начальную температуру, отделено узкой зоной горения от продуктов реакции, имеющих значительно более высокую температуру. Зона горения, разделяющая исходное вещество и продукты, перемещается в сторону исходного вещества с некоторой линейной скоростью uн, называемой нормальной скоростью горения.

В волне горения протекают химические реакции, приводящие к выделению тепла и нагреву среды, происходит перенос тепла и компонентов смеси благодаря процессам теплопроводности, излучения, диффузии, фильтрации и т. п.

Главной задачей теории распространения волн горения является изучение стационарной волны горения и выяснение условий, при которых стационарный волновой режим реакции может быть реализован. Важность этих вопросов обусловлена наибольшей распространенностью стационарного режима и его значением в практических применениях.

В стационарном режиме волна горения распространяется практически с постоянной скоростью, причем постоянной является не только скорость волны, остаются неизменными также профили температуры и концентраций компонентов (в системе координат, связанной с волной горения). Понятие о стационарной волне горения по существу является приближенным, но изменения скорости и структуры волны горения за время ее распространения в большинстве случаев столь незначительны, что понятие стационарного режима приобретает вполне реальный смысл.

Типичные профили температуры Т и скорости тепловыделения при однозонном протекании реакции показаны на рис.1, где через х/ обозначена пространственная координата, стрелкой указано направление, в котором распространяется волна; буквами QФ обозначена скорость тепловыделения.

Физическая картина процесса стационарного распространения волны горения состоит в следующем.

Поскольку скорость реакции сильно увеличивается с температурой, то там, где температура высока (адиабатическая температура горения Тb обычно лежит в пределах 1000-3000 К ), химическое превращение протекает с очень большой скоростью, к примеру, за миллисекунды. В зоне интенсивного химического превращения, расположенной в области высоких температур (см. рис. 1), выделяется тепло, которое благодаря процессу теплопроводности передаётся в рядом лежащие слои холодного вещества, нагревая их и ускоряя тем самым там реакцию. В результате в среде происходит распространение волны экзотермической реакции. Кроме теплопроводности, в волне горения происходит ещё диффузия компонентов на расстояниях порядка толщины зоны горения в случае горения газов и разные другие процессы при горении гетерогенных систем.

Волну горения удобно рассматривать в системе координат, перемещающейся вместе с ней. Пусть волна горения распространяется в направлении, обратном направлению координаты x/ (x/ - расстояние в неподвижной системе координат), со скоростью un .Уравнение теплопроводности в неподвижной системе координат запишем в следующем виде:

, (1.11)

где t – время; cp – удельная теплоёмкость среды при постоянном давлении; - плотность; - коэффициент теплопроводности; QkФk - скорость тепловыделения в k–й реакции (суммирование ведётся по всем возможным реакциям). Нижний индекс у частной производной по времени указывает, что эта производная берётся при x/ =const.

Перейти на страницу номер:
 1  2  3  4 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности