Рефераты по БЖД

Безопасность жизнедеятельности

В последние годы все большее распространение получают галоге-новые лампы —лампы накаливания с йодным циклом. Наличие в колбе паров йода позволяет повысить температуру накала нити, т.е. световую отдачу лампы (до 40 лм/Вт). Пары вольфрама, испаряющиеся с нити накаливания, соединяются с йодом и вновь оседают на вольф­рамовую спираль, препятствуя распылению вольфрамовой нити и увеличивая срок службы лампы до 3 тыс. ч. Спектр излучения галогеновой лампы более близок к естественному.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40 110 лм/Вт. Они имеют значительно большой срок службы, который у некоторых типов ламп достигает 8 .12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминоформ. По спектраль­ному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ).

Основным недостатком газоразрядных ламп является пульсация светового потока, что может привести к появлению стробоскопическо­го эффекта, заключающегося в искажении зрительного восприятия. При кратности или совладении частоты пульсации источника света и обрабатываемых изделий вместо одного предмета видны изображения нескольких, искажается направление и скорость движения, что делает невозможным выполнение производственных опе­раций и ведет к увеличению опасности травматизма. К недостаткам газоразрядных ламп следует отнести также длительный период разгорания, необходи­мость применения специальных пусковых приспо­соблений, облегчающих зажигание ламп; зависи­мость работоспособности от температуры окружа­ющей среды. Газоразрядные лампы могут создавать радиопомехи, исключение которых требует специальных устройств.

При выборе источников света для производственных помещений необходимо руководствоваться общими рекомендациями: отдавать предпочтение газоразрядным лампам как энергетически более эконо­мичным и обладающим большим сроком службы; для уменьшения первоначальных затрат на осветительные установки и расходов на их эксплуатацию необходимо по возможности использовать лампы наи­меньшей мощности, но без ухудшения при этом качества освещения. Создание в производственных помещениях качественного и эф­фективного освещения невозможно без рациональных светильников. Электрический светильник — это совокупность источника света и осветительной арматуры, предназначенной для перераспределения из­лучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помеще­ния.

Для характеристики светильника с точки зрения распределения светового потока в пространстве строят график силы света в полярной системе координат (рис. 1.16). Степень предохранения глаз работников от слепящего действия источника света определяют защитным углом светильника. Защитный угол — это угол между горизонталью и ли­нией, соединяющей нить накала (поверхность лампы) с противопо­ложным краем отражателя. Важной характеристикой светильника является его коэффициент полезного действия—отно­шение фактического светового потока светильника Фф к световому потоку помещенной в него лампы Фn т.е. hсв = Фф/Фп.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отра­женного и преимущественно отраженного света. Конструкция светиль­ника должна надежно защищать источник света от пыли, воды и других внешних факторов, обеспечивать электро-, пожаро- и взрывобезопасность, стабильность светотехнических характеристик в данных условиях среды, удобство монтажа и обслуживания, соответствовать эсте­тическим требованиям. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые, пыленепро­ницаемые, влагозащитные, взрывозащищенные, взрывобезопасные.

Расчет производственного освещения. Основной задачей светотех­нических расчетов является: для естественного освещения определение необходимой площади световых проемов; для искусственного —тре­буемой мощности электрической осветительной установки для созда­ния заданной освещенности.

При естественном боковом освещении требуемая площадь световых проемов (м2)

где Sn —площадь пола помещений, м2; еок — коэффициент световой активности оконного проема; Kзд — коэффициент, учитывающий за­тенение окон противостоящими зданиями; Кз — коэффициент запаса; определяется с учетом запыленности помещения, расположения стекол (наклонно, горизонтально, вертикально) и периодичности очистки; р — коэффициент, учитывающий влияние отраженного света; опреде­ляется с учетом геометрических размеров помещения, светопроема и значений коэффициентов отражения стен, потолка, пола; tобщ — об­щий коэффициент светопропускания; определяется в зависимости от коэффициента светопропускания стекол, потерь света в переплетах окон, слоя его загрязнения, наличия несущих и солнцезащитных конструкций перед окнами.

Источники ионизирующих излучений, их физическая природа и единицы измерения

Ионизирующее излучение вызывает в организме цепочку обрати­мых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Диссоциация сложных молекул в результате разрыва химиче­ских связей —прямое действие радиации. Существенную роль в фор­мировании биологических эффектов играют радиационно-химические изменения, обусловленные продуктами радиолиза воды. Свободные радикалы водорода и гидроксильной группы, обладая высокой актив­ностью, вступают в химические реакции с молекулами белка, фермен­тов и других элементов биоткани, что приводит к нарушению биохимических процессов в организме. В результате нарушаются об­менные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это при­водит к нарушению деятельности отдельных функций и систем орга­низма.

Индуцированные свободными радикалами химические реакции развиваются с большим выходом, вовлекая в процесс сотни и тысячи молекул, не задействованных излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Эф­фекты развиваются в течение разных промежутков времени: от не­скольких секунд до многих часов, дней, лет.

Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (луче­вая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) бес пороговые эффекты (злокачественные опухоли, лейкозы, наследст­венные болезни).

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,25 Гр. При дозе 0,25 .0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5 . 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных .может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5 .2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продол­жительной лимфопенией, в 30 .50 случаев—рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8 


Другие рефераты:

© 2010-2016 рефераты по безопасности жизнедеятельности