Рефераты по БЖД

Контрольная работа по ОБЖ

Нормируемыми параметрами шума являются уровни звукового давле­ния в октавных полосах со средне­геометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и эквивалентный (по энергии) уровень звука в децибелах (шкала А). До­пустимые уровни шума на рабочих местах не превышают соответствен­но 110, 94, 87, 81, 78, 75, 73 дБ, а по шкале А — 80 дБ.

Шум - один из наиболее распрост­раненных неблагоприятных физи­ческих факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием дизелестроения, реактивной авиации, транспор­та. Например, при запуске реактивных двигателей самолетов уровень шума колеблется от 120 до 140 дБ при клепке и рубке листовой стали — от 118 до 130 дБ, работе деревообра­батывающих станков—от 100 до 120 дБ, ткацких станков—до 105 дБ; бытовой шум, связанный с жизне­деятельностью людей, составляет 45—60 дБ.

Для гигиенической оценки шум подразделяют:

по характеру спектра — на широко­полосный с непрерывным спектром шириной более одной октавы и то­нальный, в спектре которого имеются дискретные тона;

по спектральному составу — на низкочастотный (мак­симум звуковой энергии приходит­ся на частоты ниже 400 гЦ), средне-частотный (максимум звуковой энергии на частотах от 400 до 1000 гЦ) и высокочастотный (макси­мум звуковой энергии на частотах выше 1000 гЦ);

по временным харак­теристикам — на постоянный (уро­вень звука изменяется во времени но более чем на 5 Дб — по шкале А) и непостоянный.

К непостоянному шуму относятся колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерыви­стый шум (уровень звука остается постоянным в течение интервала дли­тельностью 1 сек. и более); импульс­ный шум, состоящий из одного или нескольких звуковых сигналов дли­тельностью менее 1 сек.

Механизм действия шума на организм сложен и не­достаточно изучен. Когда речь идет о влиянии шума, то обычно основное внимание уделяют состоянию органа слуха, так как слу­ховой анализатор в первую очередь воспринимает звуковые коле­бания и поражение его является адекватным действию шума на организм. Наряду с органом слуха восприятие звуковых колеба­ний частично может осуществляться и через кожный покров ре­цепторами вибрационной чувствительности. Имеются наблюдения, что люди, лишенные слуха, при прикосновении к источникам, ге­нерирующим звуки, не только ощущают последние, но и могут оце­нивать звуковые сигналы определенного характера.

Возможность восприятия и оценки звуковых колебаний рецепторами вибрационной чувствительности кожи объясняется тем, что на ранних этапах развития организма они осуществляли функцию органа слуха. В дальнейшем, в процессе эволюционного развития, из кожного покрова сформировался более дифференцированный орган слуха, который постепенно совершенствовался в реагировании на акустическое воздействие.

Изменения, возникающие в органе слуха, некоторые исследова­тели объясняют травмирующим действием шума на перифериче­ский отдел слухового анализатора — внутреннее ухо. Этим же обычно объясняют первичную локализацию поражения в клетках внутренней спиральной борозды и спирального (кортиева) органа. Имеется мнение, что в механизме действия шума на орган слуха существенную роль играет перенапряжение тормозного процесса, которое при отсутствии достаточного отдыха приводит к истоще­нию звуковоспринимающего аппарата и перерождению клеток, входящих в его состав. Некоторые авторы склонны считать, что длительное воздействие шума вызывает стойкие нарушения в сис­теме кровоснабжения внутреннего уха, которые являются непо­средственной причиной последующих изменений в лабиринтной жидкости и дегенеративных процессов в чувствительных элемен­тах спирального органа.

В патогенезе профессионального поражения органа слуха нель­зя исключить роль ЦНС. Патологические изменения, развивающи­еся в нервном аппарате улитки при длительном воздействии интен­сивного шума, в значительной мере обусловлены переутомлением корковых слуховых центров.

Механизм профессионального снижения слуха обусловлен из­менениями некоторых биохимических процессов. Так, гистохимические исследования спирального органа у подопытных животных, содержавшихся в условиях воздействия шума, позволили обнару­жить изменения в содержании гликогена, нуклеиновых кислот, ще­лочной и кислой фосфатаз, янтарной дегидрогеназы и холинэстеразы. Приведенные сведения полностью не раскрывают механизм действия шума на орган слуха. По-видимому, каждый из указан­ных моментов имеет определенное значение на каком-то из этапов поражения слуха в результате воздействия шума.

Возникновение неадекватных изменений и ответ на воздействие шума обусловлено обширными анатомо-физиологическими связя­ми слухового анализатора с различными отделами нервной систе­мы. Акустический раздражитель, действуя через рецепторный ап­парат слухового анализатора, вызывает рефлекторные сдвиги в функциях не только его коркового отдела, но и других органов.

Рассмотрим теперь влияние инфразвука.

Длина инфразвуковой волны весьма велика (на частоте 3.5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Фигурально говоря, человек слышит инфразвук всем телом. Какие же неприятности может причинить проникший в тело инфразвук?

Довольно эффективно, в смысле влияния на человека, задействование механического резонанса упругих колебаний с частотами ниже 16 Гц, обычно невоспринимаемыми на слух. Самым опасным здесь считается промежуток от 6 до 9 Гц. Значительные психотронные эффекты сильнее всего выказываются на частоте 7 Гц, созвучной альфаритму природных колебаний мозга, причем любая умственная работа в этом случае делается невозможной, поскольку кажется, что голова вот-вот разорвется на мелкие кусочки. Звук малой интенсивности вызывает тошноту и звон в ушах, а также ухудшение зрения и безотчетный страх. Звук средней интенсивности расстраивает органы пищеварения и мозг, рождая паралич, общую слабость, а иногда слепоту. Упругий мощный инфразвук способен повредить, и даже полностью остановить сердце. Обычно неприятные ощущения начинаются со 120 дБ напряженности, травмирующие - со 130 дБ. Инфрачастоты около 12 Гц при силе в 85-110 дБ, наводят приступы морской болезни и головокружение, а колебания частотой 15-18 Гц при той же интенсивности внушают чувства беспокойства, неуверенности и, наконец, панического страха [6, 138-140].

В начале 1950-х годов французский исследователь Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. По мнению Гавро, при 7 Гц возможен паралич сердца и нервной системы [8, 2].

Ритмы характерные для большинства систем организма человека лежат в инфразвуковом диапазоне:

- сокращения сердца 1-2 Гц

- дельта-ритм мозга (состояние сна) 0,5-3,5 Гц

- альфа-ритм мозга (состояние покоя) 8-13 Гц

Перейти на страницу номер:
 1  2  3  4  5 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности