Рефераты по БЖД

Гражданская оборона

В 1988 году во Флориде при заполнении дизельным топливом лопнул резервуар. Примерно 14 000 тонн горючего за считанные секунды гигантской волной высотой 10 м перехлестнули через огораживающую насыпь и попали в реку Мононгахилу. Без воды осталось 23 тыс. человек, пришлось эвакуировать 1.200 семей, закрыть десятки предприятий.

В 1991 году в Северном море в результате технической неисправности затонула боевая атомная лодка "Комсомолец". Часть экипажа погибла, а на дне под ненадёжной защитой корпуса остались заряды с плутонием - одним из наиболее радиоактивных и ядовитых веществ на Земле (смертельная для человека доза 0,0001 г.) . Чем закончится эта катастрофа, пока совершенно невозможно предсказать.

В декабре 1985 года в индийском городе Бхопале произошла катастрофа, которая по числу непосредственно погибших в ней людей считается крупнейшей за всю историю развития промышленности. В результате ошибки оператор технического сбоя из резервуаров завода в воздух было выброшено вреднейшее химическое вещество, вызывающее удушье и потерю зрения. Только за три дня после катастрофы в городе умерло от удушья 2.000 человек!

Все эти катастрофы - результат столкновения человека с искусственной средой, которую он создал для своей безопасности и комфорта. Искусственная среда грозит человеку не извержением вулкана, а пожаром на химическом заводе и взрывом атомной станции, не ураганом, а столкновением поездов и падением самолётов. Окружающая нас искусственная среда столь же опасна и непредсказуема, как и природная. Огромный город так же враждебен человеку, как и девственный лес, только гибнут здесь люди не от зубов тигра, а под колёсами автомобиля, проваливаются не в болотные омуты, а в канализационные люки, травятся не ядовитыми растениями, а опасными лекарствами.

Человек - царь природы. Это "мудрое" изречение хорошо знакомо каждому. Если мы и цари - то не очень грамотные, необученные и совершенно не знающие своего царства. В таком случае безопаснее отказаться от "престола" и стать простыми гражданами этой огромной и очень сложной страны - планеты Земля.

Приборы радиационной разведки.

За последние 30 лет в связи с бурным развитием электроники созданы новые современные приборы для регистрации всех видов ионизирующего излучения, что оказало существенное влияние на качество и достоверность измерений. Повысилась надежность средств измерения, значительно снизились энергопотребление, габариты, масса приборов, повысилось разнообразие и расширилась сфера их применения.

Приборы для регистрации ионизирующего излучения предназначены для измерения величин, характеризующих источники и поля ионизирующих излучений, взаимодействие ионизирующих излучений с веществом.

Приборы и установки, используемые для регистрации ионизирующих излучений, подразделяются на следующие основные группы:

1. Дозиметры — приборы для измерения дозы ионизирующего излучения (экспозиционной, поглощенной, эквивалентной) , а также коэффициента качества.

2. Радиометры — приборы для измерения плотности потока ионизирующего излучения.

3. Универсальные приборы — устройства, совмещающие функции дозиметра и радиометра, радиометра и спектрометра и пр.

4. Спектрометры ионизирующих излучений — приборы, измеряющие распределение (спектр) величин, характеризующих поле ионизирующих излучений.

В соответствии с проверочной схемой по методологическому назначению приборы и установки для регистрации ионизирующих излучений подразделяются на образцовые и рабочие. Образцовые приборы и установки предназначены для поверки по ним других средств измерений, как рабочих, так и образцовых, менее высокой точности. Заметим, что образцовые приборы запрещается использовать в качестве рабочих. Рабочие приборы и установки — средства для регистрации и исследования ионизирующих излучений в экспериментальной и прикладной ядерной физике и многих других областях народного хозяйства.

Приборы для регистрации ионизирующего излучения разделяются также по виду измеряемого излучения, по эффекту взаимодействия излучения с веществом (ионизационные, сцинтилляционные, фотографические и т.д.) и другим признакам.

По оформлению приборы для регистрации ионизирующего излучения подразделяют на стационарные, переносные и носимые, а также на приборы с автономным питанием, питанием от электрической сети и не требующие затрат энергии.

Дозиметрические приборы

В зависимости от измеряемых физических величин, вида ионизирующего излучения и области применения принято устанавливать типы дозиметрических приборов и их обозначения. Тип детектора определяют по измеряемой величине (первая цифра) , виду ионизирующего излучения (вторая цифра) , области применения (третья цифра) .

ГОСТ 14337-78 подразделяет дозиметрические приборы на измерители дозы (дозиметры) , измерители мощности дозы и интенсиметры. Измерителями дозы называют дозиметры, измеряющие экспозиционную или поглощенную дозу ионизирующего излучения. Измерители мощности дозы — дозиметры, измеряющие мощность экспозиционной или поглощенной дозы ионизирующего излучения. Интенсиметры — дозиметры, измеряющие интенсивность ионизирующего излучения.

Дозиметры применяются для дозиметрического контроля персонала, измерения дозы облучения при контроле различных радиохимических процессов, при воздействии ионизирующих излучений на растительность, живые объекты, различные вещества и материалы, измерения дозы в биологических тканях человека и животных с учетом биологической эффективности ионизирующих излучений и различного состава объекта облучения (ткань, кости и др.) . Для выполнения перечисленных задач отечественная промышленность выпускает широкий ассортимент дозиметров.

Стационарные дозиметры применяются чаще всего для осуществления контроля над процессом облучения объектов до заранее заданных доз. Для дозиметрического контроля персонала стационарные дозиметры практически не применяются. В практической деятельности для измерения доз наибольшее распространение получили индивидуальные дозиметры. Рассмотрим устройство, работу и основные технические данные некоторых наиболее широко применяемых дозиметров.

Радиометрические приборы

Радиометры — приборы, предназначенные для измерения плотности потока ионизирующих излучений, пересчитываемой на величину, характеризующую источники излучений. В зависимости от измеряемых физических величин и регистрируемых излучений устанавливаются типы радиометрических приборов, основные требования к параметрам и характеристикам приборов, а также в зависимости от пределов основных погрешностей приборов — пять классов точности.

Для удобства измерений радиометры (стационарные и переносные) , как правило, выпускаются в виде двух блоков: выносного блока детектирования и основного, соединенных гибкими кабелями. В выносных блоках расположены детекторы, усилители и согласующие каскады. В основных блоках — регистрирующие и сигнальные схемы, блок питания, ручки управления прибором. Основные технические характеристики прибора, структурная схема и ее краткое описание, порядок включения прибора и проведение измерений, порядок градуировки прибора, поверки, возможные неисправности и способы их устранения приводятся в техническом описании. Для определения эффективности счета к прибору придается контрольный источник.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8 


Другие рефераты:

© 2010-2016 рефераты по безопасности жизнедеятельности