Название реферата: Действие электрического тока на биологические ткани
Скачано с сайта: www.refbzd.ru
Дата размещения: 26.04.2013
Действие электрического тока на биологические ткани
Электрический ток используется в настоящее время во всех сферах деятельности человека, как источник энергии удобный в транспортировке и применении.
При всех преимуществах применения электроэнергии нельзя игнорировать опасность электричества для человека. Термическое воздействие. Это нагрев тканей тела человека и ожоги. Электролитическое действие тока. Это воздействие на кровь и другие жидкости организма, вызывающее разложение их составных элементов. Биологическое (физиологическое) воздействие. Происходит раздражение и возбуждение мышечной и нервной тканей, что приводит к судорожным сокращениям мышц. Наиболее опасны сокращения сердечной мышцы и легких. Результат этих воздействий можно разделить на два вида поражений электрическим током: электрические травмы и электрические удары. Электрические травмы - это четко выраженные местные повреждения тканей. Среди травм различают электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения. Ожоги. Следствие теплового воздействия тока, проходящего через тело человека, или прикосновения к сильно нагретым частям электрооборудования, либо от действия электрической дуги. Наиболее сильные ожоги происходят при возникновении электрической дуги в сетях 35 – 220 кВ и в сетях 6 – 10 кВ с большой емкостью сети. В этих сетях ожоги являются основными и наиболее тяжелыми видами поражения. В сетях напряжением до 1000 В также возможны ожоги электрической дугой (при отключении цепи открытыми рубильниками при наличии большой индуктивной нагрузки). Электрические знаки — четко очерченные поражения кожи в местах соприкосновения с электродами. Могут быть круглой или эллиптической формы, серого или бело-желтого цвета с четко очерченными краями. Вызываются механическим и химическим действиями тока. Могут проявиться только спустя некоторое время после воздействия тока. Обычно поражения не сопровождаются воспалением и болезненными ощущениями, но вызывают отек и припухлость в месте соприкосновения с электродами. Знаки небольшой площади заживают благополучно, при значительной площади поражений происходит омертвение тканей. Электрометаллизация кожи – проникновение в верхние слои кожи мельчайших частичек металла вследствие его кипения и разбрызгивания под действием электрической дуги. Поврежденный участок кожи становится жестким, с шероховатой поверхностью. В месте поражения появляется ощущение инородного тела. Исход поражения, как и при ожоге, зависит от площади пораженного участка. Чаще всего металлизированная кожа сходит без следов. Электроофтальмия — воспаление наружных оболочек глаз, возникшее в результате сильного воздействия выделившихся при горении электрической дуги ультрафиолетовых лучей. Механические повреждения — Переломы костей и разрывы сухожилий и мышц вызванные сокращением мышц, при прохождении через них тока. Являются следствием электрического удара. Электрический удар — это результат биологического действия тока, состоящий в возбуждении нервных тканей при прохождении через организм электрического тока. Проявляется непроизвольными судорожными сокращениями мышц. Различают четыре степени электрических ударов в зависимости от исхода воздействия на организм, начиная от легкого, без потери сознания (первая степень) до клинической смерти (четвертая степень). В состоянии клинической смерти у человека отсутствует дыхание и сердцебиение, зрачки глаз расширены и не реагируют на свет. Длительность клинической смерти составляет примерно 4-8 минут. По истечении этого времени наступает гибель клеток головного мозга, приводящая к необратимому прекращению биологических процессов в организме, распаду белковых структур — биологической смерти. Воздействие тока на человеческий организм зависит от следующих факторов: • величины тока, проходящего через жизненно важные органы; • длительности воздействия тока; • частоты и рода тока; • приложенного напряжения; • пути прохождения тока через тело человека; • состояния здоровья человека и фактора внимания. При заболеваниях сердца, щитовидной железы и некоторых других внутренних органов человек более подвержен воздействию электрического тока. В этом случае снижается общая сопротивляемость организма внешним раздражениям, уменьшается электрическое сопротивление тела человека. Результаты, соответствующие более сильному поражению могут проявиться при меньших значениях тока. Для мужчин пороговые значения тока примерно в 1,5 раза выше, чем для женщин. Это объясняется более слабым сложением тела женщины. Также сопротивление тела человека снижается при приеме спиртных напитков. Также снижается и внимание. В то время как при концентрации внимании сопротивление организма повышается. Величина проходящего через организм тока определяется приложенным напряжением и сопротивлением тела человека. Сопротивление тела человека при сухой, чистой и неповрежденной коже колеблется в пределах от 3000 до 500000 Ом. Состояние кожи сильно влияет на величину сопротивления тела человека. Наличие царапин, грязи и влаги очень сильно (в десятки раз) снижает сопротивление. Если удалить роговой слой в тех местах, где измеряется сопротивление, то его значение падает до 500-700 Ом. Наименьшим сопротивлением обладает кожа лица, шеи, рук на участке выше ладоней и др. С увеличением тока и времени его прохождения сопротивление падает, поскольку при этом усиливается местный нагрев кожи, что приводит к увеличению потоотделения. При увлажненной коже сопротивление близко к 1000 Ом. Чем выше приложенное напряжение, тем быстрее снижается сопротивление кожи человека. Ток в теле человека не обязательно проходит по кратчайшему пути. Наиболее опасным является прохождение тока через органы дыхания и сердце по продольной оси (от головы к ногам). Доля общего тока, проходящего через сердце: • путь рука - рука – 3,3 % общего тока; • путь левая рука - ноги – 3,7 % общего тока; • путь правая рука - ноги – 6,7 % общего тока; • путь нога - нога – 0,4 % общего тока. При напряжениях до 250-300 В переменный ток с частотой 50 Гц примерно в 45 раз безопаснее постоянного тока, при более высоких напряжениях опаснее постоянный ток. Безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений. Его величина не превышает 50 мкА. Ток величиной от 0,5 мА до 1,5 мА называется пороговым ощутимым током. Он вызывает легкое покалывание, ощущение нагрева кожи. При токе 2-5 мА появляется боли в руке, дрожание кисти. Увеличение тока до 10-15 мА вызывает непереносимую боль и полное прекращение управления мышцами. Если человек просто прикоснулся к находящимся под напряжением участкам, он может освободиться от действия тока посредством одёргивания руки. Если же провод оказался зажатым в руке, то при этом значении тока человек не может по своей воле разжать пальцы от токоведущих частей и остается под напряжением. По этой причине ток величиной больше 10-15 мА называется неотпускающим. Такое явление объясняется тем, что, если по мышцам, управляющим сгибанием и разгибанием пальцев руки, будет проходить ток одной и той же величины, то сгибательные мышцы как более мощные создают несколько большее усилие, поэтому пальцы сжимаются в кулак. При прохождении по руке тока промышленной частоты до 10-15 мА воздействие биологических импульсов по воле человека еще может создать в разгибательных мышцах большее усилие, чем в сгибательных, и пострадавший может освободиться от действия электрического тока. При большем токе воздействие биологических импульсов на управление мышцами полностью утрачивается и их сокращение определяется только действием внешнего тока. Пороговый неотпускающий ток условно можно считать безопасным для человека в том смысле, что он не вызывает немедленного поражения. Но при длительном прохождении величина тока растет за счет уменьшения сопротивления тела, в результате чего могут возникнуть нарушения кровообращения и дыхания и наступить смерть. При токе величиной около 50 мА начинается судорожное сокращение мышц грудной клетки, сужение кровеносных сосудов и повышение артериального давления, что приводит к потере сознания и смерти. При прохождении тока более 100 мА по пути рука - рука или рука - ноги в течение 2 – 3 секунд приводит к смерти (смертельный ток). Так как через 1-2 секунды может наступить фибрилляция сердца (хаотические, разрозненные сокращения отдельных волокон сердечной мышцы). В результате сердце перестает работать, кровообращение нарушается. Фибрилляция продолжается и после прекращения действия тока, в результате наступает смерть. При токе более 5 А фибрилляция, как правило, не наступает, а происходит немедленная остановка сердца. Хотя известно много случаев, когда при кратковременном прохождении через человека тока величиной около 10 А не наступала смерть. Однако в этом случае происходит паралич дыхания. При больших токах, проходящих через тело человека, смерть может наступить и в результате разрушения внутренней структуры тканей организма и глубоких ожогов тела. Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца. Сердечная мышца при этом резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать Причинами смерти от воздействия электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок. При этом следует помнить, что прекращение, дыхания примерно через 2 минуты приводит к остановке сердца, и, наоборот, прекращение кровообращения также быстро приводит к прекращению дыхания. Наступает кислородное голодание организма и смерть. Электрический шок - это тяжелая нервнорефлекторная реакция организма, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ. Длится он, как правило, от десятков минут до суток. При параличе дыхания, как и при параличе сердца функции этих органов самостоятельно не восстанавливаются! В этом случае необходимо оказание первой помощи (искусственное дыхание и массаж сердца). В случае, если несчастный случай предотвратить не удалось, человеку, попавшему под воздействие электрического тока необходимо оказать первую помощь.
Энергия излучения, поглощенная веществом, вызывает процессы возбуждения и ионизации. Возбуждение - это переход электрона в атоме на более высокий энергетический уровень, а ионизация - это отрыв одного или нескольких электронов от атома.
Ионизирующее излучение подразделяют на электромагнитное и корпускулярное. Электромагнитное излучение состоит из сгустков энергии - фотонов. Фотоны не имеют массы и заряда, и теряют энергию, проходя через вещество. Энергию одного фотона можно вычислить по формуле: Е = hv, где h - постоянная Планка.
Ионизирующее и неионизирующее излучения различаются только энергией отдельных фотонов, а не общей энергией дозы. Связь длины волны электромагнитного излучения (лямбда) с его частотой (ню) описывается уравнением с = лямбда*ню, где с - скорость света. Таким образом, длина волны обратно пропорциональна частоте.
К электромагнитному излучению относят рентгеновское и гамма-излучение (длина волны порядка 1/10000000000 м, или 1 ангстрема). Они отличаются только источником: рентгеновское излучение - это результат преобразования кинетической энергии электронов при взаимодействии с атомами вещества, а гамма-излучение образуется при распаде радионуклидов.
Энергия фотона рентгеновского или гамма-излучения в килоэлектронвольтах (кэВ) равна 12,4/лямбда, где лямбда - длина волны в ангстремах.
Корпускулярное излучение - это поток частиц: электронов, тяжелых заряженных частиц (например, протонов, альфа-частиц, отрицательных пи-мезонов) или нейтронов. Частицы имеют определенную массу и заряд (кроме нейтронов, которые заряда не имеют). Заряженные частицы могут ускоряться в электрическом поле. Электроны (бета-частицы) имеют небольшую массу и отрицательный заряд и могут разгоняться почти до скорости света. В тканях они быстро теряют скорость и проникают лишь на небольшую глубину, поэтому электронно-лучевую терапию часто используют для лечения некоторых заболеваний кожи. Протоны заряжены положительно; их масса составляет около 1 (в атомных единицах массы) и превышает массу электронов почти в 2000 раз. При столкновении с веществом протоны теряют энергию и быстро останавливаются. Максимум потерь энергии и ионизации приходится на небольшой участок в конце пробега протонов, называемый пиком Брэгга. Глубина расположения пика Брэгга зависит от энергии протонов. Альфа-частицы - это ядра гелия, состоящие из двух протонов и двух нейтронов. Из-за большой массы и заряда они могут проходить через вещество, только обладая огромной кинетической энергией; в большинстве случаев для защиты от альфа-частиц достаточно листа бумаги.
Нейтроны имеют почти такую же массу, как и протоны, но не имеют заряда, и поэтому не могут ускоряться в электрическом поле. Нейтронное излучение образуется при столкновении заряженных частиц с бериллиевой или дейтериевой мишенью или при распаде тяжелых радионуклидов.
Одинаковые дозы различных видов излучения обладают разным биологическим эффектом. Например, действие 1 Гр нейтронов намного сильнее, чем такой же дозы рентгеновского излучения. В связи с этим введено понятие относительная биологическая эффективность ионизирующего излучения. Для количественной оценки относительной биологической эффективности применяют коэффициент качества - это безразмерная величина, равная отношению доз исследуемого и стандартного излучения (обычно рентгеновского с энергией фотона 250 кэВ), вызывающих одинаковый биологический эффект. Коэффициент качества зависит от линейной передачи энергии, дозы, мощности дозы и вида биологической системы. Обычно относительная биологическая эффективность рентгеновского, гамма-излучения и бета-частиц близка, но точная величина коэффициента качества зависит от энергии излучения. Так, рентгеновское излучение с более высокой энергией, чем стандартное, имеет меньший коэффициент качества. Плотноионизирующие излучения имеют более высокий коэффициент качества: в случае нейтронов и альфа-частиц для большинства биологических систем он приблизительно равен 3.
Линейная передача энергии - это отношение энергии, поглощенной веществом, к длине пробега ионизирующих частиц. Она служит количественной мерой плотности ионизации. Обычно линейная передача энергии выражается в килоэлектронвольтах на микрометр (кэВ/мкм); она прямо пропорциональна квадрату заряда частицы. Излучения с высокой и низкой линейной передачей энергии имеют разное биологическое действие: так, гипоксия в три раза ослабляет действие излучения с низкой линейной передачей энергии (например, рентгеновского и гамма-излучения), а при высокой линейной передаче энергии (например, у альфа-частиц) этот так называемый кислородный эффект отсутствует. Считается, что излучение с низкой линейной передачей энергии вызывает гибель клетки за счет накопления множественных повреждений ДНК, тогда как излучение с высокой линейной передачей энергии способно убить клетку, повредив ДНК в единственном месте.
Электромагнитное излучение, особенно рентгеновское, взаимодействует с веществом и вызывает ионизацию тремя путями: при помощи фотоэффекта, эффекта Комптона и образования электронно-позитронных пар. Фотоэффект преобладает при излучениях с низкой энергией (от 30 до 100 кэВ), которые используются в диагностической радиологии. Эффект состоит в том, что фотон взаимодействует с электроном одного из энергетических уровней атома (обычно К, L или М). Если энергия фотона превышает энергию связи электрона, то электрон покидает свою орбиту с кинетической энергией, равной разности между энергией фотона и энергией связи электрона. Фотоэлектрический эффект прямо пропорционален кубу атомного номера элемента Z; именно поэтому кости видны на рентгенограммах намного лучше, чем мягкие ткани.
У излучений с более высокой энергией, используемых в терапевтической радиологии, преобладает эффект Комптона. Он состоит в том, что при столкновении фотона с электроном, находящимся на орбите, часть энергии фотона переходит в кинетическую энергию электрона, а фотон, потеряв часть энергии, изменяет направление движения.
Фотоны с энергией выше 1,02 МэВ могут вызывать образование электронно-позитронных пар. Позитрон имеет такую же массу, как и электрон, но положительно заряжен. Пройдя небольшое расстояние, он соединяется с электроном из другой пары. При этом масса обеих частиц переходит в энергию с излучением в противоположных направлениях двух фотонов.
На ряде предприятий (атомные электростанции, контроль технологических процессов) и в научно-исследовательских учреждениях все чаще применяются различные источники ионизирующих излучений, т.к. под воздействием излучений некоторые материалы приобретают ценные свойства.
Многие реакции под воздействием ионизирующих излучений осуществляются без применения высоких температур и давления.
Излучения, способные при взаимодействии с веществом создавать в нем ионы (заряженные атомы и молекулы), называются ионизирующими.
Ионизирующие излучения проявляются в виде : альфа- и бетачастиц, гамма-лучей, испускаемых радиоактивными изотопами при самопроизвольном их распаде;
потоков электронов, протонов, дейтронов и др. заряженных частиц ускоренных до больших энергий в ускорителях;
потоков рентгеновских и гамм-лучей, протонов, нейтронов и др. вторичных излучений, возникающих при взаимодействии искусственно заряженных частиц с веществом.
Все эти излучения не воспринимаются органами чувств человека, но оказывают опасное воздействие на организм.
Ионизирующие излучения, особенно нейтронное и гамма-излучение способны проникать через вещества.
В результате воздействия ионизирующих излучений возникают лучевая болезнь, которая может быть острой и хронической, в виде общих и местных поражений. Общее действие вызывает лейкемию (белокровие), местные - ведут к заболеваниям кожи и злокачественным опухолям, возникают и наследственные заболевания, проявляющиеся в следующих поколениях.
Острые поражения наступают при облучении большими дозами в течение короткого промежутка времени. Острая лучевая болезнь характерна цикличностью ее протекания и имеет четыре периода:
1)первичная реакция
2)видимое благополучие (скрытый период)
3)разгар болезни
4)выздоровление (либо смерть).
Первичные реакции: через несколько часов после облучения тошнота и рвота, головокружение, вялость, учащение пульса, иногда, повышение температуры, увеличение числа белых кровяных телец (лейкоцитов);
Скрытый период - 1-2 недели, чем короче этот период - тем тяжелее исход заболевания;
Разгар болезни: тошнота, рвота, подъем температуры до 41 град., кровотечение из десен, носа, внутренних органов, резкое снижение числа лейкоцитов. Смерть наступает через 12-18 дней после облучения;
Выздоровление наступает через 25-39 дней, но чаще неполное раннее старение, обострение прежний болезней.
Хронические поражения бывают общими и местными, чаще скрытые.
Различают три степени хронической лучевой болезни: 1)легкая - незначительное головокружение, вялость, слабость, нарушение сна, аппетита; 2)эти признаки усиливаются, нарушение обмена веществ, кровоточивость и пр. 3)еще более усиливаются указанные признаки, кровотечения, выпадения волос.
Характер и тяжесть заболеваний зависит от поглощенной дозы облучения, мощности его, вида излучения, энергии частиц, а также от биологических особенностей облучаемой части тела и индивидуальной чувствительности к облучению. Ионизирующие излучения поражают главным образом глаза, кроветворные органы (костный мозг), железы внутренней секреции и кожи (лучевая болезнь).
Доза ионизирующего излучения — 1) мера излучения, получаемого облучаемым объектом, — поглощенная доза ионизирующего излучения; 2) количественная характеристика поля излучения — экспозиционная доза и корма. Поглощенная доза — средняя энергия ионизирующего излучения, выделенная в единице массы вещества облученного объема. Она зависит от вида интенсивности излучения, энергетического и качественного его состава, времени облучения, а также от состава вещества. Доза ионизирующего излучения чем больше, тем длительнее время излучения. Приращение дозы в единицу времени называется мощностью дозы, которая характеризует скорость накопления дозы ионизирующего излучения. Зависимость, поглощенной дозы от энергии излучения, его интенсивности и состава облучаемого вещества проявляется по-разному для различных видов ионизирующего излучения. Доза фотонного излучения (рентгеновского и гамма-излучения) зависит от атомного номера элементов, входящих в состав вещества. При одинаковых условиях облучения в тяжелых веществах она, как правило, выше, чем в легких. Например, в одном и том же поле рентгеновского излучения поглощенная доза в костях больше, чем в мягких тканях. В поле нейтронного излучения определяющим в формировании поглощенной дозы является ядерный состав вещества, а атомный номер элементов, входящих в состав биологической ткани, не имеет значения. Для мягких тканей живого организма поглощенная доза нейтронов определяется их взаимодействием главным образом с ядрами углерода, водорода, кислорода и азота. Поглощенная доза в живой ткани в поле нейтронного потока зависит от энергии нейтронов. Это связано с тем, что нейтроны различной энергии избирательно взаимодействуют с ядрами вещества. При этом могут возникать заряженные частицы, гамма-излучение, а также образовываться радиоактивные ядра, которые сами становятся источниками ионизирующего излучения. Т.о., поглощенная доза при облучении нейтронами формируется за счет энергии вторичных ионизирующих частиц различной природы, возникающих в результате взаимодействия нейтронов с веществом. У других видов ионизирующего излучения (потоков электронов, тяжелых ионов, высокоэнергетического тормозного излучения ускорителей и т.п.) — свои особенности взаимодействия с веществом, которые и определяют зависимость дозы от энергии излучения и состава вещества. Независимо от вида первичного излучения поглощенная доза ионизирующего излучения в конечном итоге сформируется за счет энергии заряженных частиц, возникающих в результате преобразования энергии первичного излучения в облучаемом объекте. В качестве единицы поглощенной дозы излучения в СИ принят грей (Гр) в честь английского ученого Грея (L.Н. Gray), известного своими трудами в области радиационной дозиметрии. 1 Гр равен поглощенной дозе ионизирующего излучения, при которой веществу массой в 1 кг передается энергия ионизирующего излучения, равная 1 Дж. В практике распространена также внесистемная единица поглощенной дозы — рад (от англ. radiation absorbed dose). 1 рад = 10-2 Дж/кг = 100 эрг/г = 10-2 Гр или 1 Гр = 100 рад. Мощность дозы излучения соответственно выражается в Гр/с, Гр/ч, рад/с и т.п. Поглощение энергии излучения является первопричиной всех последующих процессов, которые при облучении живого объекта в конечном итоге приводят к тому или иному радиобиологическому эффекту. При данном виде излучения выход радиационно индуцированных эффектов определенным образом связан с поглощенной энергией излучения, которая в ряде случаев выражается простой пропорциональной зависимостью. Это позволяет дозу излучения принимать в качестве количественной меры последствий облучения, в частности живого организма. Разные виды ионизирующего излучения при одной и той же поглощенной дозе оказывают на ткани живого организма различный биологический эффект, что определяется их относительной биологической эффективностью — ОБЭ. Биологические эффекты, индуцируемые любым видом ионизирующего излучения, принято сравнивать с аналогичными эффектами, возникающими в поле рентгеновского излучения, которое принимают за образцовое:
ОБЭ = Do/Dx где Dx — доза данного вида излучения, для которого определяется ОБЭ; Do — доза образцового излучения. На основе данных об ОБЭ разные виды ионизирующего излучения характеризуются своим коэффициентом качества. Коэффициент качества излучения является регламентированной величиной ОБЭ, устанавливаемой специальными нормативными органами. Например, нормами радиационной безопасности коэффициент качества рентгеновского и гамма-излучения при хроническом облучении принят за 1, для нейтронов с энергией 0,1—10 МэВ — 10, а для альфа-излучения и тяжелых ядер — 20. Произведение коэффициента качества (К) и поглощенной дозы (D) называется эквивалентной поглощенной дозой (Н):
H = KD. Эквивалентная доза используется для оценки радиационной опасности при хроническом облучении в малых дозах. Предполагается, что в полях излучения различного качества одно и то же значение эквивалентной дозы характеризует равную степень радиационной опасности. Это справедливо в пределах точности значений коэффициента качества. По мере накопления и уточнения данных по биологическому действию ионизирующего излучения различной природы значения коэффициента качества время от времени пересматривают. Единицей эквивалентной дозы в СИ является зиверт (Зв) — по имени шведского ученого Зиверта (R.М. Sievert) — первого председателя Международной комиссии по радиологической защите (МКРЗ). Если в последней формуле поглощенную дозу излучения (D) выразить в греях, то эквивалентная доза будет выражена в зивертах. 1 Зв равен эквивалентной дозе, при которой произведение поглощенной дозы (D) в живой ткани стандартного состава и среднего коэффициента качества (К) равно 1 Дж/кг. В практике распространена также внесистемная единица эквивалентной дозы — бэр (13 в = 100 бэр). Если в той же формуле поглощенную дозу излучения выразить в радах, то эквивалентная доза будет выражена в бэрах. Эффективная эквивалентная доза учитывает вклад отдельных органов и тканей организма и отдаленные стохастические эффекты при неравномерном облучении. Под неравномерным облучением здесь понимаются условия, при которых значения эквивалентной дозы оказываются различными для разных органов и тканей. При равномерном облучении НТ одинакова для любой точки тела.
НЕ = НТ. Эффективная эквивалентная доза измеряется в тех же единицах, что и эквивалентная доза. Для дозиметрической характеристики поля фотонного ионизирующего излучения служит экспозиционная доза. Она является мерой ионизирующей способности фотонного излучения в воздухе. Единица экспозиционной дозы в СИ — кулон на килограмм (Кл/кг). Экспозиционная доза, равная 1 Кл/кг, означает, что заряженные частицы (электроны и позитроны), освобожденные в 1 кг атмосферного воздуха при первичных актах поглощения и рассеяния фотонов, образуют при полном использовании своего пробега в воздухе ионы с суммарным зарядом одного знака, равным 1 кулону. В практике часто применяют внесистемную единицу экспозиционной дозы рентген (Р) — по имени немецкого физика Рентгена (W.К. Röntgen): 1 Р = 2,58×10-4 Кл/кг. Экспозиционную дозу используют для характеристики поля только фотонного ионизирующего излучения в воздухе. Она дает представление о потенциальном уровне воздействия ионизирующего излучения на человека. При экспозиционной дозе в 1 Р поглощенная доза в мягкой ткани в этом же радиационном поле равна приблизительно 1 рад. Зная экспозиционную дозу, можно рассчитать поглощенную дозу и ее распределение в любом сложном объекте, помещенном в данное радиационное поле, в частности в теле человека. Это позволяет планировать и контролировать заданный режим облучения. Специфической дозиметрической величиной, характеризующей поле излучения, является керма (от англ. KERMA — аббревиатура выражения Kinetic Energy Reteased in Material). Керма — кинетическая энергия заряженных частиц, освобожденных ионизирующим излучением любого вида, в единице массы облучаемого вещества при первичных актах взаимодействия излучения с этим веществом. При определенных условиях керма равна поглощенной дозе излучения. Для фотонного излучения в воздухе она является энергетическим эквивалентом экспозиционной дозы. Равномерность кермы такая же, как и поглощенной дозы; выражается в Дж/кг.
Согласно Нормам радиационной безопасности (НРБ-96) для человека установлены предельно допустимые дозы облучения - ПДД, которые дифференцированы по отдельным органам и тканям человека.
ПДД - это наибольшая доза облучения, которую человек может ежедневно получать в течение многих лет без вреда для организма на всем протяжении его жизни.
Установлены различные ПДД в бэрах для трех категорий облучения:
А - профессиональное облучение лиц, работающих непосредственно с источником ионизирующих излучений;
Б - облучение лиц, работающих в помещениях, смежных с теми, в которых ведутся работы с радиоактивными веществами и источниками ионизирующих излучений;
В - облучение населения всех возрастов.
Санитарными нормами также нормируются другие мероприятия: сроки медицинских осмотров, перечень противопоказаний для работы с радиоактивными веществами и др.
Защита от ионизирующих излучений состоит из комплекса организационных (инструктаж, инструкции, ограничение времени пребывания персонала и др.) и технических (экранирование) мер.
Защита от внешнего облучения достигается:
защита временем - уменьшением времени облучения;
защита расстоянием - увеличением расстояния до источника излучения;
защита экранированием - применением защитных экранов.
Полная доза облучения находится в пропорциональной зависимости от продолжительности облучения, а мощность дозы облучения обратно пропорциональна квадрату расстояния от источника излучения, т.е. во сколько раз меньше продолжительность облучения, во столько же раз уменьшается и полная доза облучения, а увеличение расстояния от источника излучения в 2 раза приведет к уменьшению мощности дозы в 4 раза.
Применение защитных экранов основано на свойстве материалов и веществ в зависимости от толщины слоя поглощать излучения. Толщина защитных экранов рассчитывается в зависимости от длины пробега частиц и плотности вещества экрана.
Для защиты от альфа-излучения достаточны экраны на стеклах, фольги и плексиглаза толщиной в доли миллиметра. Для защиты от рентгеновских лучей и гамма-излучений изготовляются экраны из веществ с большим атомным весом (свинец, вольфрам, чугун, нержавеющая сталь). Эти экраны часто оборудуются различными манипуляторами для дистанционного выполнения различных действий с предметами за экраном.
Для защиты от радиоактивных излучений также применяют контейнеры-боксы и индивидуальные средства защиты (ГОСТ 12.4.066-79).
К индивидуальным средствам защиты относятся спецодежда и различные приспособления: халаты, резиновые перчатки, фартуки, шапочки, калоши, резиновые сапоги, комбинезоны, очки и щитки. Спецодежда выполняется из хлопчатобумажной ткани, из пленочных материалов. Для защиты органов дыхания применяются противогазы и распираторы.
Все лица, допускаемые к работе, связанной с применением радиоактивных веществ и источников ионизирующих излучений, подлежат медицинскому осмотру и обучению безопасным методам работы, правилам пользования защитными средствами и приспособлениями, а также правилами личной гигиены.
Кроме того обязателен инструктаж по безопасным методам работы на рабочем месте, а после стажировки производится проверка знаний по технике безопасности. Повторная проверка знаний по безопасности выполнения работ и периодические медицинские осмотра проводятся не реже, чем через каждые шесть месяцев.
Загрязненные поверхности в рабочих помещениях, оборудование, инструмент, защитные средства, тело работающих должны быть дезактивированы.
Работы при использовании радиоактивных веществ должны быть организованы так, чтобы исключить возможность непосредственного контакта с радиоактивными веществом, попадания радиоактивного вещества в воздух рабочей зоны. Эти цели достигаются герметизацией радиоактивных веществ при хранении, перевозке, выполнении работ и удалении отходов, применением местной и общеобменной вентиляции, дезактивацией. В опасных местах по радиации устанавливаются знаки радиационной опасности
Планирование работ по ОТ должно включать определение заданий подразделениям и службам предприятия. Оно осуществляется на основе: перспективных (пятилетних) - комплексных планов улучшения условий охраны труда и санитарно-оздоровительных мероприятий, являющихся частью планов экономического и социального развития предприятия; текущих (годовых) планов мероприятий по охране труда, включаемых в соглашения по охране труда для заключения коллективных договоров; оперативных (квартальных, месячных) планов по цехам и участкам. Планирование мероприятий по охране труда классифицируется на перспективное, годовое и оперативное. Перспективное планирование включает в себя разработку комплексного плана улучшения условий и охраны труда. Разработке этого плана предшествует анализ состояния условий и охраны труда и результатов аттестации рабочих мест. Годовое планирование включает, как правило, часть комплексного плана и коллективный договор (соглашение) по охране труда. Оперативное планирование осуществляется для решения вновь возникающих задач. В составлении плана мероприятий по охране труда участвуют все отделы и службы предприятия. Проект плана рассматривается на совместном заседании профкома и администрации и утверждается работодателем. На предприятиях, в соответствии с существующим законодательством, периодически должны проводиться проверки состояния условий труда, обновляться данные санитарно-технической паспортизации. Ряд мероприятий по улучшению условий труда, как правило, закладывается в коллективном договоре или отдельном соглашении по охране труда, который заключается между работодателем (администрацией) и коллективом. Конкретные условия могут быть оговорены и при заключении индивидуального трудового соглашения (контракта). В настоящее время большинство предприятий должны включать в комплексные и годовые планы мероприятий по охране труда и работы по проведению сертификации на соответствие требованиям по охране труда. Эти мероприятия должны быть выполнены в соответствии с постановлением Минсоцразвития РФ N 64 от 3 ноября 2006 года "Об организации работы по проведению сертификации производственных объектов на соответствие требованиям по охране труда". В соответствии с "Временными правилами сертификации производственных объектов на соответствие требованиям по охране труда", утверждёнными данным постановлением Минсоцразвития РФ, по результатам сертификации органами по труду субъектов Российской Федерации выдаётся сертификат соответствия одной из трёх категорий:
Данный вид шума обусловлен следующими причинами: реактивной струей, турбиной, компрессором, воздуходувкой.
Реактивная струя и турбина излучают звук преимущественно позади себя, а компрессор и воздуходувка и спереди и позади.
Спектр шума компрессоров и воздуходувок складывается из широкополосного шума и тональных составляющих. Причиной широкополосного шума является турбулентный поток, набегающий на лопатки ротора и статора, а также неравномерный (в том числе в радиальном направлении) срыв вихрей с самих лопаток. Наличие в спектре тональных составляющих обусловлено периодическими колебаниями аэродинамических сил. Эти силы объясняются в основном взаимодействием лопаток с потоком, прошедшим через направляющий аппарат. Указанные источники звука носят дипольный характер. Основной тон имеет частоту B∙N, где B – число лопаток ротора, а N – частота вращения ротора.
Вертолеты. Основными источниками шума вертолета применительно к дальнему полю являются роторы и роторные двигатели.
Спектр шума, излучаемого ротором, образуется тональными составляющими (шум вращения) с основной частотой B∙N, где B – число лопаток ротора, а N – частота вращения ротора, и широкополосным шумом. В спектре шума ротора вертолета может обнаружиться до 50 гармоник основного тона. Причиной появления тональных составляющих служат аэродинамические силы, воздействующие на лопасть. Их можно разложить на стационарные (подъемная сила и сопротивление) и переменные составляющие. Первые вследствие вращения лопастей обусловливают звукоизлучение. Для винтов самолета эти силы оказываются основной причиной появления в шуме тональных составляющих. У ротора вертолета они определяют только основной тон и самые низкие гармоники. Более высокие гармоники обусловлены преимущественно переменными силами. Основной причиной возникновения переменных аэродинамических сил является взаимодействие лопасти ротора с вихревым следом предыдущей лопасти. Широкополосный шум возникает вследствие неравномерно изменяющихся аэродинамических сил, воздействующих на лопасть, которые образуются из–за турбулентностной спутной струи, вызванной предыдущей лопастью.
Шум в точках поверхности земли вблизи аэродромов от прибывающих и убывающих воздушных судов зависит от целого ряда факторов. Среди них основными являются типы самолетов и их силовые установки, применяемые режимы работы двигателей, положения механизации и величины скорости ВС, расстояния от конкретных точек для различных траекторий полета, топографические и метеорологические условия конкретного аэродрома.
Решающее влияние на размеры зон воздействия авиационного шума как по максимальному, так и по эквивалентному уровню звука оказывают взлетные операции воздушных судов.
При построении контуров авиационного шума на местности по максимальному уровню звука в качестве расчетного принимается наиболее «шумный» самолет. Вместе с тем пролеты такового иногда могут быть редкими. В таком случае шумовая картина будет несколько искаженно отражать фактическое воздействие авиационного шума на прилегающую территорию.
В ряде стран с высокой интенсивностью полетов нормируется только эквивалентный уровень звука. Например, в США нормируется среднесуточный уровень шума за год 65 дБ. В то же время поднимается вопрос, что и единичные шумовые события существенно влияют на сон и качество жизни. Считается, что усреднение скрывает эффект «хорошего удара Майка Тайсона, усредненного в течение одного часа, равносильного любовному похлопыванию».
В РФ в действующем ГОСТе нормируют два показателя - LАмакс и LАэкв. Поэтому шумовая обстановка должна проверяться по обоим, а для определения зоны зашумления выбирается наихудшая.
Требования к шумовому воздействию авиации на прилегающую территорию ужесточаются. Потребуются новые авиационные двигатели, шумовые характеристики которых должны будут соответствовать предъявляемым к ним стандартам. Однако снижение уровня шума путем уменьшения шумовых характеристик авиационных двигателей имеет определенный потенциальный предел. На повестку дня выходит новый шумовой фактор - аэродинамический шум обтекания конструкции самолета.
Защита персонала от воздействия электромагнитных излучений радиочастот осуществляется путем проведения организационных и инженерно-технических, лечебно-профилактических мероприятий, а также использования средств индивидуальной защиты.
К организационным мероприятиям относятся: выбор рациональных режимов работы оборудования; ограничение места и времени нахождения персонала в зоне воздействия ЭМП радиочастот (защита расстоянием и временем) и т.п.
Инженерно-технические мероприятия включают: рациональное размещение оборудования; использование средств, ограничивающих поступление электромагнитной энергии на рабочие места персонала (поглотители мощности, экранирование, использование минимальной необходимой мощности генератора); обозначение и ограждение зон с повышенным уровнем электромагнитных излучений.
Лечебно-профилактические мероприятия осуществляются в целях предупреждения, ранней диагностики и лечения нарушений в состоянии здоровья работника, связанные с воздействием электромагнитных излучений, и включают предварительные при поступлении на работу и периодические медицинские осмотры.
К средствам индивидуальной защиты относятся защитные очки, щитки, шлемы, защитная одежда (комбинезоны, халаты и т.д.).
Способ защиты в каждом конкретном случае должен определяться с учетом рабочего диапазона частот, характера выполняемых работ, необходимой эффективности защиты.
Экранирование источников излучения используется для снижения интенсивности электромагнитного поля на рабочем месте или устранения опасных зон излучения. В этом случае применяются отражающие или поглощающие экраны (стационарные или переносные).
Эффективность экранирования зависит от материала экрана (токопроводящий, диэлектрический или поглощающий) и его конструкции (сплошной, сетчатый, в виде пластины или замкнутого контура и т.д.).
Для защиты от ЭМП обычно применяют металлические листы, которые обеспечивают быстрое затухание поля в материале. Однако во многих случаях экономически выгодно вместо металлического экрана использовать проволочные сетки, фольговые и радиопоглощающие материалы, сотовые решетки.
Все методы очистки делятся на регенеративные и деструктивные. Первые позволяют возвращать в производство компоненты выбросов, вторые трансформируют эти компоненты в менее вредные.
В случае, если в газовом потоке содержатся ценные вещества (например, летучие растворители), может быть выгоднее использовать регенеративные методы (но все опять-таки определяется экономической целесообразностью: возможно, себестоимость выделения этих компонентов будет больше их цены). Все зависит от характеристик загрязнителя и его концентрации в газовом потоке: чем она меньше, тем дороже выделение.
По другому признаку все методы очистки можно разделить на реагентные и безреагентные. Использование дополнительных реагентов, естественно, удорожает процесс.
Наконец, методы очистки газовых выбросов можно разделить по типу обрабатываемого компонента (очистка от аэрозолей - от пыли и тумана, очистка от кислых и нейтральных газов и так далее).
Обычно, аэрозоли (взвеси твердых или жидких частичек в газе) имеются в каждом выбросе. Для их удаления используются следующие методы очистки:
-- гравитационные -- в них осаждение взвешенных частичек происходит под действием силы тяжести: газовый поток с небольшой скоростью проходит через определенный аппарат, при этом наиболее крупные взвешенные частицы падают на дно и затем удаляются;
-- инерционные -- в них используется резкое изменение направления движение газового потока: взвешенные частицы по инерции продолжают движение, ударяются о специально установленные преграды и либо прилипают к ним, либо падают на дно и удаляются. К классу аппаратов, основанных на этом методе, относится, например, жалюзийный пылеуловитель - газовый поток проходит через жалюзи, элементы которых установлены под углом к направлению его движения.
Сюда же относятся аппараты, где осаждение происходит под действием центробежной силы (центробежная сила является частным случаем силы инерции). Самыми распространенными из таких аппаратов являются циклоны. На их устройстве можно остановится подробнее, ввиду того, что почти никакое производство без них не обходится. Очень часто вся очистка заключается в пропускании газового потока через циклон, например, на мебельных и деревообрабатывающих производствах.
Циклон - это вертикальный аппарат, верхняя часть которого представляет собой цилиндр, а нижняя - конус, сужающийся к основанию аппарата. Внутри (соосно) находится еще одна труба меньшего диаметра, доходящая примерно до середины конусной части (впрочем, этой внутренней трубы может и не быть). Загрязненный газовый поток подводится тангенциально (то есть по касательной) в верхней части аппарата, закручивается спиралью и опускается вниз. Отброшенные центробежной силой взвешенные частицы ударяются о стенки и падают вниз, где под днищем аппарата обычно имеется бункер. Очищенный газовый поток в нижней части закручивается в обратную сторону и поднимается вверх, выходя из верхней части аппарата. Чем меньше диаметр циклона, тем эффективнее он очищает, но тем меньше его производительность, поэтому газовый поток можно распараллелить и пустить одновременно в несколько маленьких циклонов (батарею).
-- основанные на фильтрации (используются фильтры из ткани, нетканого полотна, а также жесткие фильтры -- насыпные или сита). Материал фильтра может иметь щелочную реакцию, тогда он помогает очистить газовый поток также от кислых газов. Фильтры регенерируют продувкой в обратном направлении или встряхиванием.
Электрические методы очистки. При этом способе очистки газовый поток направляется в электрофильтр, где проходит в пространстве между двумя электродами - коронирующим и осадительным. Частицы пыли заряжаются, движутся к осадительному электроду, разряжаются на нем. Таким методом можно очищать пыли с удельным сопротивлением от 100 до 100 млн. Ом*м. Пыли с меньшим удельным сопротивлением сразу же разряжаются и улетают, а с большим - образуют плотный изолирующий слой на осадительным электроде, резко уменьшая степень очистки. Методом электрической очистки можно удалять не только пыли, но и туманы. Очистка электрофильтров производится путем смыва пыли водой, вибрацией или с помощью ударно-молоткового механизма.
Различные мокрые методы - использование пенных аппаратов, скрубберов.
Возможны комбинации всех этих методов (например, фильтроциклон - комбинация циклона и фильтра, центробежный скруббер -- практически орошаемый водой циклон и т.д.). При выборе конкретного метода очистки руководствуются его стоимостью, объемами подлежащих очистке газовых потоков, характеристиками взвешенных частиц (дисперсионный состав, плотность пыли, смачиваемость, электропроводность).
Для очистки от газов применяют следующие методы:
-- адсорбция, то есть поглощение твердым веществом газового (в нашем случае) компонента. В качестве адсорбентов (поглотителей) применяют активные угли различных марок, цеолиты, силикагель и другие вещества. Адсорбция -- надежный способ, позволяющий достигать высоких степеней очистки; кроме того, это регенеративный метод, то есть уловленный ценный компонент можно вернуть обратно в производство. Применяется периодическая и непрерывная адсорбция. В первом случае по достижении полной адсорбционной емкости адсорбента газовый поток направляют в другой адсорбер, а адсорбент регенерируют - для этого используется отдувка острым паром или горячим газом. Затем ценный компонент можно получить из конденсата (если для регенерации использовался острый пар); для этой цели используется ректификация, экстракция или отстаивание (последнее возможно в случае взаимной нерастворимости воды и ценного компонента). При непрерывной адсорбции слой адсорбента постоянно перемещается: часть его работает на поглощение, часть - регенерируется. Это, конечно, способствует истиранию адсорбента. В случае достаточной стоимости регенерируемого компонента использование адсорбции может быть выгодным. Например, недавно (весной 2001 года) проведенный для одного из кабельных заводов расчет участка рекуперации ксилола показал, что срок окупаемости составит менее года. При этом 600 т ксилола, которые ежегодно попадали в атмосферу, будут возвращены в производство.
-- абсорбция, то есть поглощение газов жидкостью. Этот метод основан либо на процессе растворения газовых компонентов в жидкости (физическая адсорбция), либо на растворении вместе с химической реакцией -- химическая адсорбция (например, поглощение кислого газа раствором с щелочной реакцией). Этот метод также является регенеративным, из полученного раствора можно выделить ценный компонент (при использовании химической адсорбции это не всегда возможно). В любом случае вода очищается и хотя бы частично возвращается в систему оборотного водоснабжения.
-- термические методы - являются деструктивными. При достаточной теплотворной способности выбросного газа его можно сжечь напрямую (все видели факелы, на которых горит попутный газ), можно применить каталитическое окисление, или (при малой теплотворной способности газа) использовать его в качестве дутьевого газа в печах. Получающиеся в результате термического разложения компоненты должны быть менее опасными для окружающей среды, чем исходный компонент (например, органические соединения можно окислить до углекислого газа и воды -- если нет других элементов, кроме кислорода, углерода и водорода). Этот метод позволяет добиться высокой степени очистки, но может стоить дорого, особенно если используется дополнительное топливо.
-- различные химические методы очистки - как правило связанные с использованием катализаторов. Таковым, например, является каталитическое восстановление оксидов азота из выхлопных газов автотранспорта (в общем виде механизм этой реакции описывается схемой:
CnHm + NOx + CO |
-----> |
CO2 + H2O +N2, |
kt |
где в качестве катализатора kt используется платина, палладий, рутений или другие вещества. Методы могут требовать применения реагентов и дорогих катализаторов.
-- биологическая очистка - для разложения загрязняющих веществ используются специально подобранные культуры микроорганизмов. Метод отличается низкими затратами (реагентов используется мало и они дешевые, главное - микроорганизмы живые и размножаются сами, используя загрязнения как пищу), достаточно высокой степенью очистки, но в нашей стране, в отличие от Запада, широко распространения, к сожалению, пока не получил.
-- конденсация, компримирование - физические методы очистки, применимые лишь при значительных концентрациях ЗВ в выбросе.
В заключение хотелось бы добавить следующее: на многих функционирующих сейчас предприятиях системы очистки не позволяют добиться концентраций в приземном слое ниже ПДК (да и сами величины ПДК постоянно пересматриваются в сторону снижения). Часть элементов системы очистки выбросов не работает, часть работает в нештатном режиме, на закупку нового оборудования нет денег, а если бы даже и нашлись деньги, его эксплуатация сильно повысит себестоимость продукции. Так что никакая технология сама по себе для охраны природы ничего не сделает. Нужны "правила игры", которые сделают выгодным затраты на природоохранные мероприятия.